with n "nonoperating" caps; Wg, total fluidization number; AP., resistance of the cap, kPa;
Apg, resigtance of the cap at critical flow rate, kPa; APg,, resistance of the stagnant zonme,
kPa; APg,, maximum resistance of the stagnant zone at the instant of its destruction, kPa;

£, resistance coefficient of the cap; bg, Pp> density of the gas and of the packed layer,
respectively, kg/m®; e, porosity of the bed.
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ALTERNATIVE METHOD OF DESCRIBING THE KINETICS OF
CRYSTALLIZATION

A. Ya. Malkin, I. A. Kipin, UDC 66.065.51:541,64
S. A. Bolgov, and V, P, Begishev

We present a comparative analysis of a macrokinetic type equation and the Avrami-—
Kolmogorov equation for describing the crystallization of polymers. We show that
the macrokinetic equation agrees with experiment over the whole range of the de-
grees of transformations. o

A standard method of describing the isothermal kinetics of crystallization based on the
Avrami—Kolmogorov equation

& (f) = 1 — exp (—K?") W

has been available in the scientific literature for a long time. However, this equation is
difficult to use to solve practical problems which are complicated by heat tranmsfer, since
. there is no sufficiently simple generalization of Eq. (1) for a nonisothermal process. This
forces us to turn to other methods of describing a(t) quantitatively. We solve this problem
by employing the so—called macrokinetic approach, which is widely used to solve problems of
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chemical kinetics. Instead of formulating an equation for a, this method seeks an equation
for the trangformation rate @ as a function of «, just as in chemical kinetics the transfor-
mation rate B is described by some function of the degree of transformation B. A macroki~
netic equation was proposed in [1] to describe the isothermal crystallization of polymers

n() = [4; + 4:S; ()] — M) (2)
or, by considering the relative ("reduced") degree of transformation a = n/ap, an equation
for a (t) can be written in the form

a(t) = . A,S ()] (1 — o),

() = [A; + A4S ()] ( ) 3
analogous to the autocatalytic type equation of chemical kinetics. Physical reasons for an
equation of this type were given in [1], and it was shown in [2] that such an equation can be
applied to nonisothermal phase transition processes, and may even be preferred for a quanti-
tative description of crystallization processes of a number of polymers. The question of the
general agreement of the forms of the a(t) relations given by Eqs. (1) and (3) is still un~
clear, and this is important in view of the fact that Eq. (1) gives a good description of a
large volume of experimental data. The present paper is devoted to a consideration of this
question.

First of all we note that if the generality of the function S(a) is not restricted,
Eq. (1) can be considered as a special case of (3). In differential form Eq. (1) has the
form . .

n—1

1 ﬁ_ 1/n 1 n B »
e N n(ln l—-—a) ' (4)

Equation (3) can be written in a similar form:

1 do
—a E—-Al“l‘Azs(“)- . (5)

It is clear that Eq. (4) can be obtained from (5) by setting

n—1

A, =0, 4 = K"/, S(a) = (m-l ! ) O

It should also be noted that in Eq. (4) the initial rate of crystallization is assumed zero,
whereas, in (5) o = A, as @ + 0. This reflects the fact that nuclei of the new phase can
generally be found, or are instantaneously and spontaneously formed in the melt, and this
is not taken into account in the Avrami —Kolmogorov .equation.

The special case of Eq. (3) when S(a) = Da, i.e., S(a) is a linear function, is of
great interest. This form of the function S(a) was used successfully in [1, 2]. Let us
consider for this case the relation between Eq. (1) and the integral macrokinetic equation,
which can easily be obtained from Eq. (3):

Co+1
a(f)=1— ————r,
. @ Co -+ exp (Cif) ‘ (6)

where Co = Ag/A;; Ci = A, + Al.

The possibility of replacing the nonlinear function w(a) = (In 1/(1 — a))(n—x)/n by a
linear function can be shown from graphs of w(a) for n = 2, 3, and 4 (Fig. 1). These curves
are actually well described by the function f(a) = A, + Ala over a wide range of values of
a except for a finite region. This is not unexpected, since as a + 1 the right-hand side of
Eq. (4) approaches «; in contrast with this, it follows from Eq. (5) for S(a) = Da that A, +
AzDa has a well-defined finite value, which also leads to the divergence mentioned above.

It should be emphasized, however, that the experimental data on the isothermal crystalliza-
tion of polymers in the final stage of the process generally lie somewhat below the theo-
retical curve calculated with Eq. (1) [3, 4]; i.e., in just this region Eq. (1) turns out
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Fig. 1. Comparison of macrokinetic (5) and Avrami—Kolmogorov (4)
equations for various n ®/n = 1): points are w(a): 1) n = 2;
2) 3; 3) 4; solid curves are f(a).

Fig. 2. Comparison of theoretical crystallization isotherms cal-
culated from Eqs. (1) and (6): 1, 3, 5) from Eq. (1) for n = 4,
3, and 2 (K = 0.1 min™®); 2, 4, 6) from (6) with values of Co and
Ci found from (12) and (13).

to be defective. This emphasizes the fact that Eq. (5), or its nonisothermal variant, is
to be preferred in calculating the crystallization of polymers.

Let us estimate the divergences which may arise in the processing of experimental data
according to Eqs. (1) and (6). This is most simply done by mathematical modeling. To do
this it must be shown that it is always possible to find two pairs of constants K and n, C,
and Co, which when substituted into Eqs. (1) and (6) respectively give theoretical func-
tions a(t) which are sufficiently close in the whole time interval. The divergences which
can arise, as a rule, should not exceed the experimental errors. If we assume that

Co4-1

exp(—Kt") m—2 1 |

P~ e e G N
the problem is posed as follows: it is required to find values of the constants Co and C,
for which this approximate equality will be ensured. Suppose it is rigorously satisfied
at a certain time tx (we demote by ax the values of the functions themselves at this point).
From the condition that the two curves are tangent at t = t, it follows that the functions
themselves and their first derivatives are equal

1 l/" 1+C0d* .
In —L=207%
(]n l—a*) _ g l—a, 8
K/ Cy ’
i/n -1 = G
K'"n (ll'l —a, ) e = Co T (1 +Co°‘*)~ (9)

The simultaneous solution of (8) and (9) leads to a transcendental equation for Co:

14+ Cty o 1 Cyry 1
In =nln ,
1+C, 1 —a, 1—a, (10)

which can be solved graphically or numerically for a fixed value of a,.

In solving practical problems it is convenient to use the approximate analytic relations
Co = £1(n) and Ci = £2(K, n) to convert the constants of Eq. (1) into macrokinetic constants.
This can be done most simply for ayx = 0.5; then Eqs. (10) and (8) respectively take the form
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Fig. 3. Dependence of degree of crys-
tallization a; 4 on n at the point of
inflection of the crystallization iso~-
therm: 1) from Eq. (14); 2) from (15),
using the analytic dependence of Co on

n (12).
Co+2 a - K A\~ ,
In(C, -+ 2) =* =1n4", C;= (————) In(C, + 2). 1n
CotD o = (a3 Cot2).
The exact solution of system (11) is well approximated by the following analytic relations:
C()=4ﬂ———4,
. o K\ 12)

In order to represent possible divergences in this transformation, Fig. 2 shows curves
plotted from Eq. (1) using K, = 0.1 min™%, n, = 2, XK, = 0.1 min™>, n; = 3, Ky = 0.1 min™",
ns = 4, and curves calculated with the macrokinetic equations (6) with the constants Co, and
C, which appear in it determined with formulas (12) and (13), using the values given above
for the constants in Eq. (1). In this special case, which is quite typical of many poly-
meric materials, Eq. (6) is valid (cf. Fig. 2) for all three curves with deviations from the
curve plotted from Eq. (1) which are up to 1% in the ranmge 0.2 < a < 1.0, and up to 807 in
the range 0 < o < 0.2,

It is important also to compare the points of inflection on the theoretical crystalli-
zation isotherms obtained by using Eqs. (1) and (6), since the raw experimental data, as a
rule, are the time dependences of the heat flux q(t), and consequently the position of such
a characteristic of the process as the maximum rate of crystallization is quite well defined,
of course within the limits of experimental error. From the condition d?a/dt® = 0 for Eq.
(1) it is easy to obtain the following relations for ap, i at the point of inflection of the
crystallization isotherm:

n—1
a;:.iz 1 ———exp(— n ) . (14)
For Eq. (6) the formula which has the same meaning is

. 1
ax = 0.5( ] — —5—) , (15)

0

i.e. the position of the point of inflection predicted by the macrokinetic equation and by
the Avrami—Kolmogorov equation is determined by the value of a single constant (Co or n).
We now substitute the approximate value of Co from Eq. (12) imto (15), and plot in Fig. 3
a*_i_ and a;*i against n calculated with Eqs. (14) and (15) respectively. Then for each
og the values n = 2, 3, and 4 which we used in the mathematical model experiment, we deter-
mine from Fig. 3 the corresponding points aPsi. and aE;i', where the subscripts indicate the
equation from which ap i, was calculated.

Using Fig. 2, and knowing ofzi+ and a?ai', for each pair of curves, we find the time
ty.i, corresponding to the position of the maximum on the thermokinetic curve (points on
tge figure). The divergence of the values of tPele and pPsl® for all three curves does not
exceed 2%, which is no more than the experimentéi error.
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In the present article we knowingly did not cite or discuss specific experimental data,
first of all because there are extensive data in the literature which are described at least
as well by Eq. (3) as by Eq. (1), and secondly because some examples of thais kind are con-
tained in our earlier papers [1, 2].

Thus, the analysis performed showed that a macrokinetic type equation describing the
kinetics of a phase tramsition as an autocatalytic process is in as good agreement with
experiment over the whole range of the degrees of transformations up to very high values
as the widely known Avrami—Kolmogorov equation, and in the region of limiting degrees of
transformation (as a + 0 and a + 1) is clearly better than the latter. An equation of the
autocatalytic type is very much more convenient to use in solvimg nonisothermal problems.

NOTATION

a, degree of completion of heat release; t, time; K and n, Avrami coastants; n, degree
of crystallinity; a4, equilibrium degree of crystallinity; A, and Aa, constants in macro-
kinetic equation; Op.i.s degree of completion of heat release at point of inflection of
crystallization isotherm.
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HEATING OF A DOﬁﬁLE STEPPED PLATE BY A MOVING SOURCE

Yu. M. Kolyano and V. A. Gorbachev ' UDC 539.377

GCeneralized functions and Fourier—Llaplace integral transformation are used to de-
rive the nonstationary temperature distribution and forces in a two-stepped plate
heated by a moving source.

Consider an infinite thermally insulated plate heated by a moving line source of out-
put q (Fig. 1). The thickness of the plate 26(x) is represented by means of an unsymmetrical
unit function in the form

8(x) = & + (8. — 8, S, (%), ' 1)
where
(L, >0,
S+(;)“{o, t<o.

We substitute (1) into the heat-conduction equation for a plate of variable thickness
[1]

L smor _T o
T+ 50 & % a Q6+(§)6(y V)

and use the identity [2] S, (x)8,(x) = &,.(x) to get
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