
with n "nonoperatlng" caps; WG, total fluldlzation number; APc, resistance of the cap, kPa; 
AP~, resistance of the cap at critical flow rate, kPa; APsz , resistance of the stagnant zone, 
kPa; AP~z , maximum resistance of the stagnant zone at the instant of its destruction, kPa; 
6, resistance coefficient of the cap; pg, pp, density of the gas and of the packed layer, 
respectively, kg/mS; c, porosity of the bed~ 

Io 

2. 

3. 

4. 

. 

6. 

7. 

LITERATURE CITED 

S. S. Zabrodskil, High-Temperature Installations with Fluldlzed Bed [In Russian], Ener- 
giya, Moscow (1971). 
N. I. Gel'perln, V. G. Ainshteln, and V. B. Kvasha, Fundamentals of the Fluldlzed Bed 
Technique [in Russian], Khlmlya, Moscow (1967). 
J. W. Hiby, '~inimum pressure drop at the incident flow plate in fluldized beds," Chem. 
Ing. Technlk, 39, No. 10, 1125-1129 ~1967). 
A. P. Baskakov and L. G. Gal'perln, "Crltlcal resistance and critical fluldlzlng rate 
of flne-gralnedmaterial in conlcal apparatuses," Inzh.-Fiz. Zh., 9, No. 2, 217-223 
(1965). 
A. P. Baskakov, B. V. Berg, A. F. Ryzhkov, and N. F. Fillppovskll, Processes of Heat 
and Mass Transfer in Fluldlzed Beds [in Russian], Metallurgiya, Moscow (1978). 
G. A. Minaev, The Mechanics of Jet Flows in a Granular Bed [in Russian], Preprlnt of 
the Institute of Heat and Mass Transfer, Academy of Sciences of the BSSR, Minsk (1976). 
O. G. Shapovalova and P. V. Klassen, "Transition of fluidlzed beds into the Inhomo- 
geneous state. Calculation of the minimum rate of nonuniform fluidlzatlon," Teor. 
Osn. Khim. Tekhnol., 14, No. 3, 464-466 (1980). 

ALTERNATIVE METHOD OF DESCRIBING THE KINETICS OF 

CRYSTALLIZATION 

A. Ya. MalkJn, I. A. Kipln, 
S. A. Bolgov, and V. P. Begishev 

DDC 66.065.51:541.64 

We present a comparative analysis of a macroklnetlc type equation and the Avr~ml-- 
Kolmogorov equation for describing the crystallization of polymers. We show that 
the macrokinetic equation agrees with experiment over the whole range of the de- 
grees of transformations. 

A standard method of describing the isothermal kinetics of crystallization based on the 
Avrami--Kolmogorov equation 

o: (t) =~ 1-- exp (--Kt") (i) 

has been ava i l ab le  in  the s c i e n t i f i c  l i t e r a t u r e  for  a long time. However, t h i s  equation i s  
difficult to use to solve practical problems which are complicated by heat transfer, since 
there is no sufficiently slmple generalization of Eq. (1) for a nonisothermal process. This 
forces us to turn to other methods of describing a(t) quantitatively. We solve this problem 
by employing the so-called macrokinetic approach, which is widely used to solve problems of 

I n s t i t u t e  of the Mechanics of Continuous Media, Academy 0f Sciences o f t h e  USSR, Perm 
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chemical kinetics. Instead of formulating an equation for a, t h i s  method seeks an equation 
for the transformation rate a as a function of a, just as in chemical kinetics the transfor- 
mation rate ~ is described by some function of the degree of transformation B. A macroki- 
netic equation was proposed in [1] to describe the isothermal crystalliza~ion of polymers 

~] (;t) = [A 1 _~_ A281 (~])](r e __ ~1) (2) 

or, by considering the relative ("reduced") degree of transformation a = Tl/ap, an equation 
for a (t) can be written in the form 

h (t) = [Ax -4-~ A2S (a)] (1 - -  r 
(3) 

analogous to the autocatalytic type equation of chemical kinetics. Physical reasons for an 
equation of this type were given in [i], and it was shown in [2] that such an equation can be 
applied to nonisothermal phase transition processes, and may even be preferred for a quanti- 
tative description of crystallization processes of a number of polymers. The question of the 
general agreement of the forms of the a(t) relations given by Eqs. (1) and (3) is still un- 
clear, and this is important in view of the fact that Eq. (i) gives a good description of a 
large volume of experimental data. The present paper is devoted to a consideration of this 
question. 

First of all we note that if the generality of the function S(a) is not restricted, 
Eq. (I) can be considered as a special case of (3). In differential form Eq. (i) has the 
form 

n--! 

1 --~ dt 1 --a (4) 

Equation (3) can be written in a similar form: 

1 d ~  
--= A I + A ~ S ( ~ ) .  (5)  

1 - - ~  dt 

It is clear that Eq. (4) can be obtained from (5) by setting 

In )n-~ 
A~ = O, A.  = K ' / "n ,  S (=)  = 1 - - =  ' " " 

It should also be noted thai in Eq. (4) the initial rate of crystallization is assumed zero, 
whereas, in (5) ~ = Ax as a § 0. This reflects the fact that nuclei of the new phase can 
generally be found, or are instantaneously and spontaneously formed in the melt, and this 
is not taken into account in the Avrami--Kolmogorov equation. 

The special case of Eq. (3) when S(a) = De, i.e., S(a) is a linear function, is of 
great interest. This form of the function S(a) was used successfully in [i, 2]. Let us 
consider for this case the relatlon between Eq. (1) and the integral macrokinetlc equation, 
which can easily be obtained from Eq. (3): 

C o +  1 
a(t)  1 C o §  (6) 

where Co = A~'/AI ; Cl = AI + A 2. 

The possibility of replacing the nonlinear function m(a) = (In i/(i -- a))(n-~)/n by a 
linear function can be shown from graphs of ~(a) for n ffi 2, 3, and4 (Fig. I). These curves 
are actually well described by the function f(a) = AI + A~a over a wide range of values of 
u except for a finite region. This is not unexpected, since as a § 1 the right-hand side of 
Eq. (4) approaches =; in contrast with t h i s ,  it follows from Eq. (5) for S(a) = Da that Az + 
A2Da has a well-deflned finite value, which also leads to the divergence mentioned above. 
It should be emphasized, however, that the experimental data on the isothermal crystalliza- 
tion of polymers in the final stage of the process generally lle somewhat below the theo- 
retlcal curve calculated with Eq. (1) [3, 4] ; i.e., in just this region Eq. (1) turns out 
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Fig .  i. Comparison of m a c r o k i n e t i c  (5) and Avrami--Kolmogorov (4) 
equations for various n ~K I/n n = i): points are ~(~): i) n = 2; 
2) 3; 3) 4; solid curves are f(a). 

Fig. 2. Comparison of theoretical crystallization isotherms cal- 
culated from Eqs. (I) and (6): i, 3, 5) from Eq. (i) for n = 4, 
3, and 2 (K = 0.i min-n).; 2, 4, 6) from (6) with values of Co and 
C.I found from (12) and (13). 

to be d e f e c t i v e .  This emphasizes the  f a c t  t h a t  Eq. (5 ) ,  o r  its noniso the rmal  v a r i a n t ,  i s  
to be p r e f e r r e d  in  c a l c u l a t i n g  the  c r y s t a l l i z a t i o n  of polymers.  

Let  us e s t i m a t e  the  d ive rgences  which may a r i s e  in  the  p rocess ing  of expe r imen ta l  da t a  
according to Eqs. (1) and (6) .  This  i s  most simply done by mathemat ica l  model ing.  To do 
t h i s  i t  must be shown t h a t  i t  i s  always p o s s i b l e  to f i n d  two p a i r s  of  c o n s t a n t s  K and n, C, 
and Co, which when s u b s t i t u t e d  i n t o  Eqs. (1) and (6) r e s p e c t i v e l y  g ive  t h e o r e t i c a l  f unc -  
t i ons  u ( t )  which a r e  s u f f i c i e n t l y  c l o s e  in  the  whole t ime i n t e r v a l .  The d ive rgences  which 
can a r i s e ,  as a r u l e ,  should no t  exceed the  exper imen ta l  e r r o r s .  I f  we assume t h a t  

Co +'1 
exp (--Ktn ) ~ Co + exp (Clt) (7) 

the problem is posed as follows: it is required to find values of the constants Co and Ca 
for which this approximate equality will be ensured. Suppose it is rigorously satisfied 
at a certain time t, (we denote by a,. the values of the functions themselves at this point). 
From the condition that the two curves are tangent at t = t, it follows that the functions 
themselves and their first derivatives are equal 

.ln I t 1/" 1 + CotZ, In  ( 8 )  
1 - -  ~ .  1 - -  o~,  

K C1 ' 

( .1  ).~1 C1 
- - = (1 + C o ~ , ) .  K l/~n In 1 - - ~ ,  C o + l  (9) 

The s imul taneous  s o l u t i o n  of  (8) and (9) l eads  to a t r a n s c e n d e n t a l  equa t ion  f o r  Co: 

l + C o ~ ,  In l ~ C o s  * = n i n e ,  (lO) 
1 + Co 1 - -  o~, 1 - -  ~,. 

which can be solved graphically or numerically for a fixed value of ~,. 

In  so lv ing  p r a c t i c a l  probl~ns i t  i s  convenien t  to use t he  approximate a n a l y t i c  r e l a t i o n s  
Co = fa (n )  and C, = fa(K, n) to  conver t  the  c o n s t a n t s  of  Eq. (1) i n t o  m a c r o k i n e t i c  c o n s t a n t s .  
This  can be done most s imply f o r  a ,  = 0 .5 ;  then  Eqs. (10) and (8) r e s p e c t i v e l y  take  the  form 
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Fig. 3. Dependence of degree of crys- 
tallization ap. i on n at the point of 
inflection of the crystallization iso- 
therm: I) from Eq. (14); 2) from (15), 
using the analytic dependence of Ce on 
n (12). 

in(Co-t-2) c~ ln4n "C,--= ( K )'/" Co + 1 ' ~ In (Co + 2) .  (11) 

The exact solution of system (ii) is well approximated by the following analytic relations: 

Co = 4 ~ -- 4, (12) 

Cl In(4 ~ 2) ( 1 ~ 2  ) '/n = . -- (13) 

In order to represent possible divergences in this transformation, Fig. 2 shows curves 
plotted from Eq. (i) using K, = 0.i min -2, n, = 2, K2 = 0. i min -s, nz = 3, Ks = 0.i min -4, 
ns = 4, and curves calculated with the macrokinetic equations (6) with the constants Ce and 
C, which appear in it determined with formulas (12) and (13), using the values given above 
for the constants in Eq. (1). In this special case, which is quite typical of many poly- 
meric materials, Eq. (6) is valid (cf. Fig. 2) for all three curves with deviations from the 
curve plotted from Eq. (1) which are up to 1% in the range 0.2 ~< a ~< 1.0, and up to 80% in 
the range 0 < a < 0.2. 

It is important also to compare the points of inflection on the theoretical crystalli- 
zation isotherms obtained by using Eqs. (1) and (6), since the raw experimental data, as a 
rule, are the time dependences of the heat flux q(t), and consequently the position of such 
a characteristic of the process as the maximum rate of crystalllzatlon is quite well defined, 
of course within the limits of experimental error. From the condition d~a/dt 2 = 0 for Eq. 
(1) it is easy to obtain the following relatlons for Up. i at the point of inflection of the 
crystallization isotherm: 

P-i n (14) 

For Eq. (6) the formula which has the same meaning is 

7--~ I-c0 ' 
(1s) 

i.e. the position of the POint of inflection predicted by the macroldnetic equation~and by 
the Avrami--Kolmogorov equation is determined by the value of a single constant (Co or n). 
We now substitute the approximate value of Ce from Eq. (12) into (15), and plot in Fig. 3 
:~.i. and Up i against n calculated with Eqs. (14) and (15) respectively. Then for each 

the values n = 2, 3, and 4 which we used in the mathematical model experiment, we deter- 
mine from Fig. 3 the corresponding points a~ i. and a~j i" , where the subscripts indicate the 
equation from which ap.i. was calculated. 

Using Fig. 2, and knowing a~& i. and a~ i', for each pair of curves, we find the time 
t~ i. corresponding to the position of the maximum., on the th.ermokinetlc curve (points on 
t~e figure). The divergence of the values of t p'I" and p~1. for all three curves does not 
exceed 2%, which is no more than the experiment~ error. 
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~n the  p r e sen t  a r t i c l e  we knowingly did not  c i t e  or d i s cus s  s p e c i f i c  exper imenta l  d a t a ,  
f i r s t  of  a l l  because t h e r e  are  ex t ens ive  da t a  in  the l i t e r a t u r e  which are  desc r ibed  a t  l e a s t  
as we l l  by Eq. (3) as by Eq. (1) ,  a n d s e c o n d l y  because some eXomples of t h i s  kind are  con- 
t a ined  in  our e a r l i e r  papers [1, 2].  

Thus, the  a n a l y s i s  performed showed t h a t  a m a t t . k i n e t i c  type equa t ion  d e s c r i b i n g  the  
k i n e t i c s  of a phase t r a n s i t i o n  as an a u t o c a t a l y t i c  process  i s  i n  as good agreement wi th  
experiment over the  whole range of  the  degrees  of  t r a n s f o r m a t i o n s  up to very  h igh  va lues  
as the  widely  known Avrami-Kolmogorov equa t ion ,  and in  t h e  reg ion  of l i m i t i n g  degrees  of  
t r a n s f o r m a t i o n  (as a § 0 and a § 1) i s  c l e a r l y  b e t t e r  than the l a t t e r .  An equat ion  of the  
autocatalytic type is very much more convenient to  use in solvlq nonisothermal problems. 

NOTATION 

a ,  degree of  complet ion of  hea t  r e l e a s e ;  t ,  t ime;  K and n,  Avrami c o n s t a n t s ;  n, degree 
of c r y s t a l l i n i t y ;  Ue, e q u i l i b r i u m d e g r e e  of c r y s t a l l i n i t y ;  A, and As, c o n s t a n t s  in  macro- 
k i n e t i c  equa t ion ;  a p . i .  , degree  of  complet ion of hea t  r e l e a s e  a t  p o i n t  of i n f l e c t i o n  of 
crystallization isotherm. 
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HEATING OF A DOUBLE STEPPED PLATE BY A MOVING SOURCE 

Yu. M. Kolyano and V. A. Gorbachev UDC 539.377 

Genera l ized  f u n c t i o n s  and F o u r i e r - - L a p l a c e  i n t e g r a l  t r a n s f o r m a t i o n  are  used to de-  
r i v e  the  n o n s t a t i o n a r y  tempera ture  d i s t r i b u t i o n  and fo r ce s  i n  a two-stepped p l a t e  
hea ted  by a moving s o u r c e .  

Consider an infinite thermally insulated plate heated by a moving line source of out- 
put q (Fig. 1). The thickness of the plate 26(x) is represented by means of an unsymmetrical 
unit function in the form 

where 

8 (x) = 61 + (% - -  8,) S+ (x), 

1, ~>o,. 
s+(~)= o, ~<o.  

(1) 

[1] 
We substitute (i) into the heat-conduction equation for a plate of variable thickness 

1 d6 (x) aT 
AT + . . . . . . .  QS+ (x) 6 (y -- W) 

8(x) dx ~x a 

and use the  i d e n t i t y  [2] S+(x)6+(x) = 6+(x) to  ge t  
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